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Supply chain attack powered by targeted adversarial evasion

Figure: Infecting end user’s environment through a supply chain attack
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A classical targeted evasion attack

Figure: [Intriguing properties of neural networks, Szegedy et al., 2013]

Note: This is a targeted evasion attack, which is different than
simple obfuscation.

Univ. Lorraine / Univ. Arizona

Kelpie: A Black-Box, Zero Query, Mimicry Attack on ML-based Binary Function Classifiers 3 / 31



Introduction Kelpie RQ1 RQ2 Conclusion References

Our domain → Binary function classification

Figure: Modifying the payload for ’benign’ classification

Perturbation is more difficult: payload functionality must be
conserved, which reduces our possible actions.
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Our domain → Binary function classification

Defenders

Classifiers using ML techniques on static analysis features:
Graph-based features (ex CFG nodes and edges)
Assembly code features (ex sequences of instructions)
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Evasion attack landscape

Attacker threat model for ML evasion attacks

White-Box
Transfer attacks
Black-Box (Kelpie)

Black-box evasion attacks

Multiple queries: building iteratively an adversarial input.
Zero query: performing a one-time perturbation. (Kelpie)
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Kelpie framework

Kelpie capabilities

Kelpie is a black-box, zero query, targeted mimicry attack
framework:

Aims to conceal a function (payload) by imitating the
characteristics of a target.
Performs perturbation at the source code and assembly level.
No access to the classifier architecture or training dataset.

Novel approach: we not only want to hide the payload, but also
deceive the classifier into recognizing the target.
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Kelpie Workflow

How do we perform mimicry attacks?

Univ. Lorraine / Univ. Arizona

Kelpie: A Black-Box, Zero Query, Mimicry Attack on ML-based Binary Function Classifiers 8 / 31



Introduction Kelpie RQ1 RQ2 Conclusion References

Kelpie Workflow

Figure: 4 steps workflow to produce the modified payload p
(t)
adv
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Kelpie CF: Control-Flow mimicry
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Kelpie ASM: Assembly features mimicry

Twofold strategy

Dead blocks (added by KelpieCF): Copy and paste the
instructions from the corresponding target block.
Alive blocks: Perform a liveness analysis to identify safe
insertions spaces, and insert instructions to imitate the
operands distribution of the target.

Univ. Lorraine / Univ. Arizona

Kelpie: A Black-Box, Zero Query, Mimicry Attack on ML-based Binary Function Classifiers 12 / 31



Introduction Kelpie RQ1 RQ2 Conclusion References

Kelpie ASM: Assembly features mimicry
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Kelpie Workflow

Figure: 4 steps workflow to produce the modified payload p
(t)
adv
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Research Question 1

Can Kelpie deceit the state-of-the-art classifiers?
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RQ1 - Can Kelpie deceit the SotA classifiers?

Selected models

5 top-performing classifiers identified by Marcelli et al.1: Asm2vec,
GGSNN, GMN, Trex and Zeek. 3 more recent models: JTrans,
HermesSim, CLAP (best performances and novel features).

Function dataset

13 of the most starred publicly available C repositories from GitHub
(ex: redis, git, hashcat, darknet).

1marcelli_how_2022.
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RQ1 - Can Kelpie deceit the SotA classifiers?

Tests

Classification task (New metric: Mimicry Attack Success
Rate (MASR))
Retrieval task
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Classification Task

A binary function classifier is represented as function C , which
takes as input a pair of function and return a similarity score
between 0 and 1.

F × F −→ [0, 1]

(f , g) 7−→ C (f , g)

We define a threshold σ through ROC curves analysis to transform
the continuous score into a binary decision:

C(f , g) =

True, C (f , g) ≥ σ,

False, C (f , g) < σ.
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Classification Task

For a classifier C, given a payload (p), a target (t), and a modified
payload (p(t)adv), we have 4 possible outcomes:

Case C(p(t)adv, p) C(p(t)adv, t) Outcome Interpretation

1 True False Worst case Modified payload still linked to payload; target rejected
2 False False Evasion Payload concealed; target rejected
3 True True Mimicry Payload and target both predicted similar
4 False True Ideal Payload concealed; target accepted

C(x , y) = True indicates the classifier predicts x and y are similar.
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Mimicry Attack Success Rate (MASR)

Given a set of perturbed payloads P, and a classifier C where
"C(p(t)adv , t) = True" means the classifier predicts that p(t)adv and t
are similar, the MASR is defined as follows:
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Mimicry Attack Success Rate (MASR)

Given a set of perturbed payloads P, and a classifier C where
"C(p(t)adv , t) = True" means the classifier predicts that p(t)adv and t
are similar, the MASR is defined as follows:

MASR =
|{p(t)adv | C(p(t)adv , t) = True }|

|P|

We want the modified payload and the target to be predicted as
similar (False positive), which is a success for Mimicry.
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Mimicry Attack Success Rate (MASR)

Given a set of perturbed payloads P, and a classifier C where
"C(p(t)adv , t) = True" means the classifier predicts that p(t)adv and t
are similar, the MASR is defined as follows:

MASR =
|{p(t)adv | C(p(t)adv , t) = Similaire ∧ C(p(t)adv , p) = Différent}|

|P|

We also want the payload and the modified payload to be predicted
as different (False Negative), which is a success for Evasion.
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Mimicry Attack Success Rate (MASR)

Given a set of perturbed payloads P, and a classifier C where
"C(p(t)adv , t) = True" means the classifier predicts that p(t)adv and t
are similar, the MASR is defined as follows:

MASR =
|{p(t)adv | C (p

(t)
adv , t) = True ∧ C (p

(t)
adv , p) = False}|

|P|

Understanding the MASR score

The MASR is a score between 0 and 1, where 0.25 means that 25%
of the attacks succeed.
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MASR Results (Classification Task)
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Figure: MASR in classification task after Kelpie perturbation
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RQ1 - Conclusions

RQ1 takeways

Our experiments show that Kelpie produces mimicry attacks which
succeed in 25% to 74% of cases. Kelpie consistently undermines
the performance of state-of-the-art classifiers, exposing a critical
weakness in their design.

Univ. Lorraine / Univ. Arizona

Kelpie: A Black-Box, Zero Query, Mimicry Attack on ML-based Binary Function Classifiers 22 / 31



Introduction Kelpie RQ1 RQ2 Conclusion References

Research Question 2

Can Kelpie imitate a patched function while conserving a
vulnerability?
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RQ2 - Can Kelpie imitate a patched function?

Dataset

We use a dataset of 60 vulnerable functions from FFmpeg,
Tcpdump, and OpenSSL, with CVSS scores between 7.5 and 9.8,
enabling remote access control, denial-of-service, etc.
Example: CVE-2016-10190 (FFmpeg heap buffer overflow).

Methodology:
We choose a vulnerable function, the payload.
We choose a patched version of the function, the target.
We use Kelpie to produce the modified payload, imitating the
patch while conserving the vulnerability.

Note: The patched version can be very similar to the vulnerable
version of the function.
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RQ2 - Can Kelpie imitate a patched function?

Model MASR Baseline MASR Kelpie

Asm2Vec 0.00 0.26
CLAP 0.00 0.24
GGSNN 0.00 0.28
GMN 0.00 0.28
HermesSim 0.00 0.29
jTrans 0.00 0.31
Trex 0.00 0.24
Zeek 0.00 0.35

Table: Kelpie MASR results in vulnerability insertion

RQ2 takeways

We have shown that critical vulnerabilities can be inserted 1 in 4
times, which also demonstrate the necessity of further research
into the representation of code at the function scale.
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Conclusion - Kelpie

We have presented Kelpie, a framework for binary function evasion
attacks.

Kelpie capabilities

Black-box targeted mimicry attack
No queries to the classifier
Code-level perturbations (opposed to header modifications)
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Conclusion - Results

In the previous experiments, we demonstrated that:

RQ1: Classifiers fail to recognize on average 40% of the
mimicry attacks.
RQ2: We are able to insert a vulnerable function, deceiving
the classifier into recognizing the patch at least in 24% of
the attacks.
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Conclusion - Research perspectives

Defender’s perspective

Need of research in the field of binary function classification based
on ML, to build models that are able to grasp the semantic of the
code, and not only syntactic patterns.

Attackers’s perspective

Improve Kelpie performances in the mimicry task, for example
being more precise in the assembly code mimicry and be able to
modify sequences of instructions of the payload by semantically
sequences which fit the target structure.
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